
Build System:
bb

Mark Boorer • 31.03.2021

bb
Overview

Why
● What problems does it solve

How
● High level overview

● Package descriptions

● Target definitions

● What does it look like to interact with

from a developer perspective

Live Demo

Q&A

Why?
Manual Software
building is painful

● Often requires patches
that need to keep up with
upstream changes

● Runtime is potentially
unstable (incorrect
LD_LIBRARY_PATH or
RPATH)

Other systems aren’t
feature complete

● NixOS exposes only a
single build tree

● REZ’s resolver requires
manual developer tuning

● Conda is slow and relies on
patching binaries for
$ORIGIN lookups

Extensive investigation of
existing solutions

● ~100 user stories from various
departments (R&D, PipeTD, Prod)

● Main focus on bb, Bazel, Buck,
Conda, Rez, and our current system

How?
High Level Overview

● Package build instructions are described via executable /
scripted code (js/lua/?) and ran in chrooted isolation

● The collection of package build instructions for the entire
company is maintained as a single git repo - the “deployment”

● The deployment also contains the list of final execution
environments (targets) that we are using (maya, zeno, nuke, etc)

● Developers interact with the deployment to build new
environments, update existing ones, all in isolation. No more
testing in production

How?
High Level Overview

● Merges to the deployment are predicated on all targets building
successfully, and all unit/integration tests passing

● Built packages are stored in immutable, hashed locations

● Build artefacts are re-used when targets have overlapping,
binary identical dependencies and only diverge when necessary

● Build artefacts can be stored in local or remotely shared
locations, increasing the opportunity for artefact re-use and
therefore decreasing build times

How?
Package Descriptions

How?
Package Descriptions

● Are programmable code, so repetitive patterns can be factored
out into functions

● Allow for complex logic to be expressed (such as V.01 uses
autotools, V.02 needs CMake, etc)

● Could be expanded to parse definitions from static files as well

● Are small and fast enough to be executed during the graph
evaluation

How?
Package Descriptions

● Minimal version checking. Version numbers are only used to
trigger different build instructions (add additional
dependencies, or enable / disable features)

● If a package won’t work with a random version of its
dependency, then we prefer that package to just fail to build in
that configuration. The most frequent developer interaction
with a package is to update its version!

● Failed builds cannot be deployed!

How?
Target definitions

● List of final environments that must be built by the deployment

● Input the package parameters to drive the various combinations
of artefacts (usually version numbers or compile options)

● These parameters can be nested and derived from to allow for
minimal copy-pasting

● Are also created by executable code, allowing for loops or other
more complicated definitions

How?
Developer interaction

1. Downloads the latest copy of the deployment
2. Overrides the default versions for the given packages
3. Evaluates all the builder functions and checks hashes
4. Issues build commands in dependency order
5. Returns the path to the built environment

How?
Developer interaction

● Reads the “world” package provided and launches commands
(defaults to bash)

● Has controlled interaction with the outside world

Technical Implementation

Technical Implementation
Details

● Most functionality is exposed via libbb, a self contained C library
with very minimal external dependencies (only libm, libc, etc)

● The responsibility of entering environments is managed solely
through the bb world command, meaning different platforms
can have different implementations (eg, containers,
LD_LIBRARY_PATH, Hyper-V, Hypervisor.framework)

● In the current Linux implementation, packages are brought
together via overlayfs in their own process space via the
unshare syscall

Technical Implementation
Why {javascript, lua, ?} ?!

● Build functions need to be evaluated often

● They have very few interdependencies and would be fastest if
executed over multiple threads

● Most scripting languages are not implemented in a thread safe
fashion (including Python)

● Would love to use Starlark (a python dialect used in Bazel), but
implementations only exist in Go, Rust, and Java

● Support for other languages can be easily added in the future

Possible workflows
No blocked releases
Developers attempt to release their changes immediately, and rely on
extensive automated unit testing / integration testing before
deployment to catch bugs. Production has the ability to roll their
entire show back to a known good point in time in the event of error.

Small batch testing
Developers can make temporary environments available to selected
artists for testing, without worrying about impacting the rest of
production, or having the test versions leak to other users.

Possible workflows
Easy off-site deployment
As the environments are utilising Linux containerization primitives,
exporting from the build system as a docker container or similar
would be possible, easing laptop or independent server deployment.

Extremely simple OS updating
As the build system only really relies on userspace of the Linux Kernel
underneath, upgrading the operating system is very simple. Centos
7-8 migration would be seamless, and no chasing of packages would
be required.

Possible workflows
Immutable and Reproducible
The internal hashing and read-only nature of the build system
artefacts make for a great combination with asset management
systems. Renders could store a dependency on a fixed moment in time
of our software state.

Isolation and testability
Because every change to the deployment happens in isolation, it is
possible for developers or IT support to try out massive changes
without fear of breaking production, for example updating the
compiler used to mitigate Spectre class vulnerabilities, or seeing if a
database schema update would work out.

Possible workflows
Easier debugging
Developers have the ability to rebuild every package in their
hierarchy in debug mode at the press of a button.

Easier troubleshooting

In DCC’s with many plugins, it can be difficult to determine who is at
fault for segfaults and crashes; bb makes it easy to build custom
environments such as “Nuke with only 3pp plugins”, “RV without GLSL
nodes”, “Maya with only this one plugin loaded”.

Live Demo

Thank you Questions?

